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COMPARISON OF MEASURED AND CALCULATED TURBULENT HEAT TRANSFER

IN A UNIFORM AND NONUNIFORM FLOW FIELD ON THE X-15
UPPER VERTICAL FIN AT MACH NUMBERS OF 4.2 AND 5.3%

By Ronald P. Banas
Flight Research Center

SUMMARY

Turbulent heat-transfer coefficients and measured local static pressures
were oObtained in flight on the X-15 upper vertical fin with both a sharp and a
blunt leading edge. The data are compared with calculated values. Calculated
and measured Mach number profiles in the shear layer are also presented.

Heat-transfer coefficients were opbtalned from measured skin temperatures
at free-stream Mach numbers of approximately 4.2 and 5.3 and free-stream

Reynolds numbers between 1.8 x 106 and 2.5 x lO6 per foot. Comparisons of mea-
sured and calculated heat-transfer coefficients obtained in both a uniform flow
field and a nonuniform flow field show that the heat~-transfer coefficients cal-
culated by Eckert's reference-temperature method were from 32 percent to

57 percent higher than the measured wvalues.

INTRODUCTION

The X-15 flight-research program has included many flights to investigate
the effects of aerodynamic heating and to determine the adequacy of the heat-
transfer methods used in the design of the X-15.

Early heat-transfer results on the X-15 at Mach numbers of 3, 4, and 5
and at low anglesg of attack (ref. 1) indicated that the reference-temperature
method of Eckert (ref. 2) for turbulent flow overestimated the measured heat-
transfer coefficients by as much as 60 percent. Reference 1 algo showed that
closer agreement was obtained when the effect of heating rate on the reference
temperature was neglected (the adiabatic-wall reference-temperature method) .
Reference 3 compared the methods of Van Driest (ref. 4), Eckert (ref. 2}, and
reference 1 in temperature time-history form to X-15 data at Mach numbers of
4, 5, and 6. The study concluded that the method of Eckert, with the effect
of heating rate neglected, estimated the measured temperatures at various loca-
tions on the X-15 with sufficient accuracy for flight-safety purposes. The
close agreement between measured and calculated heat transfer (ref. 1) and
skin temperature (ref. 3) was obtained by assuming attached-shock (uniform)
flow conditions and neglecting the effect of heating rate.

*Title, Unclassified.




Since the measured data were obtained in the presence of a shear (entropy)
layer! that extends well past the boundary-layer edge, Quinn and Kuhl in a sub-
sequent paper (ref. 6) used calculated shear layers to determine flow condi-
tions at the outer edge of the boundary layer in their analysis of the measured
heat-transfer data. They concluded that, with the shear layer taken into
account, the theories of Van Driest and Eckert still overestimated the heat
transfer on the fuselage by 35 percent to 60 percent and on the wing by 30 per-
cent to 45 percent.

In order to minimize the uncertainties in the analysis of the measured
heat-transfer data associated with the bluntness-induced flow conditions, the
upper fin of the X-15 was modified to incorporate a sharp-leading-edge
configuration. Data were obtained on both the original blunt-leading-edge fin
and the modified sharp-leading-edge fin. This paper discusses the flow condi-
tions and presents measurements of heat transfer in a uniform flow field
(attached shock) and in a nonuniform flow field (detached shock) at the instru-
mented chord of the upper fin. In addition, heat-transfer data from the wing
and fuselage of the X-15 are included for comparison with the fin data. The
measured heat-transfer data are compared with the method of Eckert, and the
flow-field data are compared with the method of Moeckel.

SYMBOLS
A = wawcp,w
by skin thickness, ft
.o . Btu
p specific heat of air, To-°F
c specific heat of skin material, —otu—
D,W P > 1b-°F
(linear variation for Inconel X from 0.11 at 200° T to 0.1k at
1300° F, ref. 7)
H altitude, ft
h heat-transfer coefficient, _—EEEE————
ft7-°F-sec
M Mach number
Pr Prandtl number
P absolute static pressure, lb/f’t2

'A flow field with a Mach number gradient, normal to the flow direction,
produced by the normal and highly curved portion of the detached shock wave
associated with a blunt leading edge (ref. 5).

2



Re Reynolds numoer, ovx

o
St Stanton number, _n
P1V1Cp,1
Ty recovery temperature, °R
Tor skin temperature, °R
t time, sec
v velocity, ft/sec
X flow length measured from leading edge, ft
v height above surface, in.
Z = A%;? + ge—:TwLL
a angle of attack, deg
B angle of sideslip, deg
A error (appendix only)
3 angle of deflection of upper vertical fin, deg
5 emissivity of skin material, 0.76
) dynamic viscosity, lb/ft-sec
o} density of air, lb/ft3
oy density of skin material (for Inconel X, 515 1b/ft3)
o Stefan-Boltzmann constant, L.78 x 10713 ————EEE————, and
ft2-sec-°R
standard deviation (appendix only)
Subscripts:
av average
i incompressible
1 local

o free stream



TEST SURFACE

The general test area of this investigation is shown on the three-view
drawing of the X~15 in figure 1.

To generate a uniform flow field, the leading edge of the movable upper
vertical fin of the X-15 was changed from a blunt, 1.0-inch-diameter, 5° half-
angle wedge to a sharp, 0.030-inch-diameter, 5° half-angle wedge. The new
leading edge, machined from type 347 stainless steel, increased the chord
length 5 inches. Figure 2 shows the fixed and movable portions of the fin,
detailed section views of the sharp and the blunt leading-edge configurations,
and pertinent dimensions.

To insure turbulent flow along the fin, boundary-layer trips consisting of
spot welds 0.125 inch in diameter and 0.020 inch to 0.025 inch high were
placed along the right side of the fin 5 inches from the leading edge (fig. 2).
Figure 3 shows a closeup view of the sharp leading edge and a boundary-layer
trip. Additional information on the vertical fin and other physical character-
istics of the X-15 is included in reference 3.

INSTRUMENTATION

A shear-layer rake was mounted on the left side of the sharp fin 27 inches
from the leading edge and 12 inches from the top of the fin. Figure 4(a) shows
the shear-layer rake in the location at which the uniform flow-field data were
obtained. Figure h(b) shows the shear-layer rake fastened to the blunt fin at
the 93-percent-chord position, the location at which the nonuniform data were
obtained.

The locations of surface thermocouples and static=pressure orifices on
the upper vertical fin are shown in figure 2. The thermocouples were fastened
to both the right and the left sides of the vertical fin; whereas, the static-
pressure orifices were placed on the right side only. The skin thickness at
the thermocouple locations, flow distance from the leading edge, and percent
chord corresponding to the flow distance are presented in table I for both the
blunt and the sharp fin. Other pertinent dimensions for the blunt fin are
listed in table II.

The thermocouples were 30-gage chromel-alumel wires spot-welded to the
inside surface of the skin. The static-pressure orifices were 0.250-inch
inner-diameter tubing installed flush with the outside surface of the skin.

The entire shear-layer rake was constructed of Inconel X. The surface orifices
and impact probes were connected by tubing to standard NACA self-recording
mechanical-optical manometers in the side fairing of the fuselage.

The lag in the static-pressure system was determined from the data of

reference 8 to be negligible for the flight conditions at which the heat-
transfer coefficients were obtained, and the static-pressure measurements are
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accurate to 10 lb/ft2 (ref. 9). Since the impact pressure is much greater
than the static pressure, the lag in the impact-pressure system was assumed to
be negligible. The resulting error in local Mach number arising from com-
bining the impact- and static-pressure errors is *0.l.

The overall accuracy of the thermocouple system is +15° F. By using the
measured skin temperature and assuming a limit error of £15° F, the resulting
probable error in heating rate is +0.84k deg/sec. The errors in the heat-
transfer coefficients, as derived from measured data, are analyzed in the
appendix.

TEST CONDITIONS

Heat-transfer coefficients were derived from measured skin temperatures
during quasi-steady periods of four X-15 flights~~two with the sharp-leading-
edge vertical fin (3-23 and 3-31)1, and two with the blunt leading edge (2-22
and 2-29). A typical flight time history (3-23) is shown in figure 5. The
shaded area typifies the quasi-steady periods in which velocity, altitude,
angle of attack, and angle of sideslip were changing slowly in comparison with
the other portions of the flight. The free-stream Mach number, static pres-
sure, static temperature, angle of attack, angle of sideslip, upper-fin
deflection, and measured skin temperature for the quasi-steady periods of each
flight are listed in tables III and IV, and the measured surface pressures for
the various chord positions are listed in tables V and VI. Heat-transfer
coefficients were derived at the following conditions:

Sharp leading edge Blunt leading edge
Flight 3-23 3-31 2-22 2-29
t, sec 80 87 90 116
M, 4 .28 5.31 5.27 4,19
Re, per foot 2.k2 x 100 1.86 x 106 2.40 x 106 2.45 x 106

DATA REDUCTION

The following equation for thin-skin heat balance was used to derive the
heat-transfer coefficients from the measured skin temperatures

ATy
o (Tp - Tyr)

(1)

'In the flight-designation system used for the X-15, the first digit
is the airplane number; the following digits indicate the free-flight number.
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The skin temperatures T, were recorded at l-second intervals. To determine

the heating rates nine data points were fitted with a second~order curve.

—_w
dt’

The derivative at the midpoint was used to determine the heat-transfer
coefficient. The turbulent recovery temperature T, was calculated by using

a recovery factor equal to the cube root of the Prandtl number evaluated at
the reference temperature. The values of the recovery factor ranged from
0.90 to 0.91.

RESULTS AND DISCUSSION

Shear-layer Measurements

The effects of the blunt and the sharp leading edges on the local-flow
conditions were determined from shear-layer-rake measurements on the fin sur-
face (fig. 4) during flights similar to those from which data were obtained
for this investigation. Local Mach numbers were derived from the Rayleigh
pitot-tube formula (ref. 10) by using measured pressures from the shear-layer-
rake impact probes and surface orifices. The usual assumption of constant
static pressure through the boundary layer was extended to the farthesti impact-
pressure probe (4.5 inches). The measured Mach number profiles for both the
blunt and the sharp leading edges are shown in figures 6 and 7, respectively,
for free-stream Mach numbers corresponding to those for which heat-transfer
data are presented. The measured Mach number profiles are compared to those
calculated for inviscid flow by the method of Moeckel (ref. 11), wherein the
shock~wave shape computed by the method of Love (ref. 12) was used. This pro-
cedure is described in reference 6.

Blunt leading edge.— Calculated and measured Mach number profiles normal
to the surface of the blunt-leading-edge fin are presented for M = 4,2 in

figure 6(a) and for M_ = 5.1 in figure 6(b). The data show good agreement.

The repeatability in the measurements can be seen in figure 6(b), in which
data from two flights are presented.

About 1 inch above the surface, the measured local Mach numbers deviate
from those based on inviscid-flow calculations. This deviation is caused by
the presence of the boundary layer. Unpublished data from a boundary-layer
rake at the 70-percent chord and the same span position as the shear-layer
rake agreed well with boundary-layer thicknesses calculated by the method of
references 13 and 14. At the shear-layer rake, the edge of the boundary layer
was calculated to be 1 inch from the surface, as shown in the figure. If the
Mach number at the outer edge of the boundary layer is assumed to be that
given by the Moeckel-Love method 1 inch above the surface, the Mach number is
less than 8.5 percent above the value calculated at the surface. This condi-
tion 1s seen by comparing the difference between the calculated local Mach
numbers at y = 0 and y = 1 inch. Since the shear-layer profile is a
function of the shock shape and, therefore, remains unchanged with flow
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number at the outer edge of the boundary layer and at the fin surface becomes
even less as the boundary-layer height diminishes forward of the rake position.
The effect of tnis small difference is insignificant in the calculation of the
heat-transfer coefficients; therefore, the calculated inviscid surface values
were used. The surface Mach number is easily calculated by using a swept-
normal-shock proceduref

distance for a constant pressure ratio the difference between the Mach

>

Sharp leading edge.— Calculated and measured Mach number profiles are
presented for M, = ¥.2 in figure 7(a) and for M, = 5.1 in figure 7(b), the

same free-stream Mach numbers as those at which the blunt-leading-edge data
were obtained. Good agreement between the measured and the calculated data is
shown. Again, data from two flights are presented, indicating good repeat-
ability.

The calculations show that the local Mach number increases rapidly from
the swept-normal-shock values! at the surface to the oblique-shock values near
v = 0.35 inch. The Mach numbers measured at y = 0.5 inch indicate that the
innermost probe 1s at or within the boundary-layer edge. This observation is
supported by estimated boundary-layer heights of about 0.5 inch at this loca-
tion. When these data are compared with those of figure 6, it may be seen that
the shear layer produced by the installation of the sharp leading edge is
reduced to the extent that the growth of the boundary layer takes place in
essentially uniform flow. Accordingly, the boundary-layer-edge Mach numbers
for the analysis of the sharp-fin heat-transfer data were calculated by using
oblique-shock assumptions (ref. 15).

If the measured Mach numbers (above 0.5 inch) and the wedge half-angle
are used with the Prandtl equation for an oblique shock (ref. 16, page 86), the
resulting Mach number upstream of the vertical fin is within #0.1 of the free-
stream value. Hence, even in the highly complex flow field approaching the
upper vertical fin of the X-15, the simple oblique-shock method adequately
predicts the local conditiors at the edge of the boundary layer.

Surface Pressures
Measured surface pressures on both fins are shown in figure 8 for the

time in each flight at which heat-transfer coefficients are presented. The
measured data are compared to calculated oblique-shock values at M = L.2

'As applied in reference 6, a swept-normal-shock total pressure 1s com-
puted by taking the component of the free-stream Mach number normal to the
leading edge, and using this Mach number to obtain the total-pressure ratio
across the shock wave from the normal-shock tables of reference 15. This
total-pressure ratio is multiplied by the rree-stream total pressure to obtain
s swept-normal-shock total pressure behind the shock wave. The latter pres-
sure is used with the measured static pressure to obtain the local Mach number
that would exist at the surface in the absence of a boundary layer.



(fig. 8(a)) and M, = 5.3 (fig. 8(b)). Except for the lower pressures measured

at x =5 feet and x = 6.3 feet on the sharp fin, the calculated values are
in good agreement with the measurements. Accordingly, the oblique-shock
assumption was considered adequate for calculating values of local static pres-
sure at the boundary-layer edge. The lower pressures measured at x = 5 feet
and x = 6.3 feet on the sharp fin are, as yet, unexplained; however, it may
be noted that the effect is not discernible in the measured heat-transfer data
of figure 9.

Other boundary-layer-edge conditions (density, velocity, and static
temperature) were derived from isentropic-flow relationships, and the
viscosity was evaluated by using Sutherland's equation (ref. 15).

Heat Transfer

Vertical-fin data.— Measured and calculated heat-transfer coefficients on
both the blunt and the sharp fin are presented in figure 9 for free-stream
Mach numbers of 4.2 and 5.3. The data were corrected for conduction losses at
the thermocouple locations, as explained in the appendix. At M, = .2

(fig. 9(a)), the conduction correction increased the value of the heat-transfer
coefficient derived from equation (1) by 5.7 percent to 14.4 percent. At
M, = 5.3 (fig. 9(b)), the values were increased 5.9 percent to 10 percent (see

table in appendix, page 16). 1In general, the differences between the data
obtained on the left and the right sides of the fin are consistent with the
estimated root-mean-square errors of about 7 percent for the data at M =5.3

and 11 and 13 percent for the data at M = 4.2 (see appendix).

Differences between data from the left and the right sides have been
noted only at the two most forward locations of the sharp fin where the data
from the left side have shown consistently higher heat transfer than the data
from the right side. Also, on the blunt fin at x = 5 feet, the data from
both the right and the left sides have been consistently higher than the
general level of the data forward and rearward of this location.

The measured data were faired for comparison with the calculated values
obtained from the method of Eckert (ref. 2). This fairing is shown by the
solid lines in figure 9. No significant differences, other than the excep-
tions noted previously, are evident in the comparison of the sharp- and the
blunt-fin data for the range of flow lengths and Mach numbers investigated.

As shown in figure 9(a), the method of reference 2 overestimates the
average value of the heat-transfer coefficients measured on the blunt fin by
34 percent to 48 percent and on the sharp fin by 38 percent to 42 percent. Tn
figure 9(b) the calculated values are excessive by 41 percent to 57 percent for
the blunt fin and by 32 percent to 42 percent for the sharp fin. Hence,
whether the comparison is made in a uniform (sharp fin) or nonuniform (blunt
fin) flow field, Eckert's method results in an overprediction of the measured
heat-transfer coefficients.
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Comparison of vertical-fin, wing, and fuselage data.— The trend tc lower
measured heat transfer than would be predicted by the method of Eckert was also
observed in the dats from the lower wing and fuselage (refs. 1 and 6). In
figure 10, the wing and fuselage data of figures 10(b) and 11 of reference 6
are compared with blunt- and sharp-vertical-fin data in the form of compress-
ible Stanton number (dimensionless heat-transfer coefficient) divided by the
incompressible Stanton number as a function of local Mach number. In addition
to the data cf figure 9, blunt- and sharp-fin data from flights not reported
herein are included. The measured compressible Stanton numbers were obtained
by using the measured heat-transfer coefficients and calculated local-flow
conditions. The flow conditions were calculated by using the attached-shock
method for the sharp fin and the detached-shock method (see footnote, page 7)
for the blunt fin. The incompressible Stanton numbers were calculated from
the equation (ref. 6, appendix B)

(Req)2 (Pry)2/3

which was obtained by using Colburn's modified Reynolds analogy together with
Blasius' relation for the flat-plate turbulent skin-friction coefficient.

The solid line in figure 10 represents the calculated Stanton number pre-
dicted by Eckert's method with the effect of heating rate neglected (the
adiabatic-wall reference-temperature method). The following eguation (ref. 6,
eq. (B9)) was used in the calculation

5t _ 1 0-65 (3)
Sti A1 4 0.1296M,2

The comparison shows the measured data to be in fair agreement with calcu-
lated results. It is particularly significant that, even in a uniform flow
field (sharp fin), the level of the heat-transfer data is about the same as
reported in reference 6. Also, the fact that the adiabatic-wall reference-
temperature method gives a better estimate of the heat transfer than the
method of Eckert is demonstrated generally for all Mach numbers and test loca-
tions on the X-15.

CONCLUSTIONS

Comparison of measured and calculated turbulent heat-transfer coefficients
on the X-15 shows that:

1. The method of Moeckel and Love provided a good approximation to the
measured shear-layer profile at free-stream Mach numbers of 4.2 and 5.1 on
both the blunt-leading-edge and the sharp-leading-edge vertical fin.



2. Turbulent heat-transfer coefficients predicted by Eckert's method,
based on measured values of the local-Tlow conditions on the sharp-leading-
edge fin, overestimated the measured heat transfer by 32 percent to 42 percent.

3. Turbulent heat-transfer coefficients predicted by Eckert's method,
based on measured local-flow conditions on the blunt-leading-edge fin, over-
estimated the measured heat transfer by 34 percent to 57 percent.

L. The levels of turbulent heat transfer measured on the blunt- and the
sharp-leading-edge vertical fin compare favorably with previously reported data
on the wing and fuselage; the levels were near the values given by Eckert's
reference-temperature method when the adiabatic-wall temperature was used in
lieu of the actual skin temperature to calculate the reference temperature.

Flight Research Center,
Naticnal Aeronautics and Space Administration,
Edwards, Calif., May 28, 1965.
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APPENDIX
ERROR ANALYSIS

The probable error in the measured heat-transfer coefficients derived
from equation (l) was estimated by using the concept of a limit error.! 1In
combination with a Gaussian distribution, the probable error (see ref. 17) is
equal to 0.675 times the standard deviation ¢ and represents the deviation
for which the probability of being exceeded is one-half. After the total dif-
ferential of equation (1) was divided by equation (1), the probable error for
each of the significant quantities was combined as an independent error
(ref. 18) according to the following equation

2 2 2

2
ar ar aT
—l 2 - _w 4 2
(@)2 _< dt> By A (Adt> ba Y (L), - Tw)(ceTw) AT,
nl T\ Z B, Z ATy 7Ty - 7o) T
at,
2 2 2 2 RCIN
Iy ATy . 2(Ty - Tno)| [N, (egTw) e )
’ Ip - Ty Te TI'_TW M, * Z € (A1
where
A= pwbwcp,w
ar
7= Ao + get "
Ty = [l + O-Q(PTz)l/BMlg]TZ ~ [l + O.E(Prm)l/3M&2]I;
ar,,

To obtain values of the slope of wall temperature the least-squares

at
method was first used to fit a second-order curve through nine wvalues of the
measured wall temperature. This fitted curve was then differentiated at its
T
midpoint to obtain —2, This slope was used as the average value -

dt dt
av

and was also the value used fto determine the heat-transfer coefficients in
figure 9. The end points of the nine values of wall temperature were then
adjusted by #15° F to account for the overall limit error in the thermocouple
system. These adjusted end points, along with the original center point,
were used to determine derivatives at the midpoint that would represent

'The maximum amount by which the quantity may reasonably be supposed to
be in error, sometimes designated as 3g.
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the limit maximum and the 1limit minimum deviation from the average slope
(dTw)
dt av
The difference between the limit maximum slope and the average slope was
assumed to equal three standard deviations in the Gaussian distribution. The
probable error of 0.675 of a standard deviation was then determined and used

in equation (Al) along with the other similarly obtained values listed in the
following table:

Quantit Limit error Probable error
v (30) (0.6750)

atT,,
- +3.75 deg/sec ?10.84k deg/sec
by, b+0.00042 £t +0.000093 ft
T, +15° F e p
T, |  =e—mmmmmmea cHio
Vo | mmmmmmmmmeeeo 50 fps
1 N (G d+0,0517
€ | eemmmmm———e- +0.038

4 Constant error for a nine-point curve fit.
bX—l5 manufacturer's drawings.

®Reference 19.

dEstimated.

Example Calculations

In order to show the magnitude of the statistical root-mean-square error
in the heat-transfer coefficient, three example calculations representative of
the data from the four flights shown in figure 9 have been made by using
equation (Al).

From the following examples, it will be seen that the data with the
smallest statistical root-mean-square error are obtained at the higher heating
rates. The analysis will show that the heating-rate error, in the second term
of equation (Al), outweighs the other possible errors in most instances. The
other errors also contribute heavily to the low-heating-rate data (example 3)
in such a manner as to yield a large statistical root-mean-square error.

Example 1l.— For flights 3-31 and 2-22 with the sharp and the blunt fin,
the following conditions were used:

12



M, = 5.3
X = 2.57 ft
p, = 515 1b/cu ft
b, = 0.00308 ft
Btu

Cp,w = 00127 lb- OF

Btu
A= pwbwcp,w = (515)(0.00308) (0.127) = 0.2014 =0
ft=-"F
dT
The slope 7;% was obtained as discussed previocusly at t = S0 seconds for

flight 2-22 and at t = 87 seconds for flight 3-31. The following typical
value was used for both flights

dT

7ﬂ¥ = 13.7° F per sec at T = 1,275° R
Thus
aT
W
7 = pwaCp)W —th- + OGTWu
Z = 3.719

The recovery temperature, as determined from enthalpy considerations,
yields T, = 2,290° R and T, = 381° R.

Substitution of the values of Z, A, T

- Tr’ and T, along with the

values of the probable error from the preceding table into equation (A1) gives

2
(%h) _ 5.002 x 10°% + 20.842 x 107% + 0.515 x 107 + 5.611 x 107H

£ 13.464 x 107* + 1.666 x 107%
== = $0.069 or *6.9 percent

Hence, the probable root-mean-square error in the heat-transfer coefficient for
flights 3-31 and 2-22 (fig. 9) was #6.9 percent.

Example 2.— For flight 3-23 with the sharp fin, the following conditions
were used:

13



M, = L.23
x = 2.576 ft
o, = 515 1b/cu Tt
b, = 0.00308 ft
Btu
= 0. ——
p,w 122 T7op
A= p b.,c = (515)(0.00308)(0.122) = 0.1935 _Btu__
WEWIp, W FL2_°F
dT,,
The slope =5 &8 obtained for t = 80 seconds, was
dTy, 3 .
el 8.10° F per sec for T, = 1,105° R
Thus
dT
v L
Z = pwbwcp,w 3T + 0€eTy,
Z = 2.109

Using T, = 1,982° R and T_ = 384°R and substituting the values of

Z, A, Ty, T,, and T, along with the values of the probable error from

the preceding table into equation (Al) gives

5
(éﬁ) = 5.071 x 10°% + 59.965 x 107% + 1.465 x 107% + 11.93% x 107%

h
+36.158 x 107% + 1.649 x 107"
%? = *#0.106 or +10.6 percent

Hence, the probable root-mean-square error in the heat-transfer coefficient
for flight 3-23 was *10.6 percent.

Example 3.— For flight 2-29 with the blunt fin, the following conditions
were used:

M, = k.2
X =2.57 Tt
Py, = 915 1b/cu £t

14



b, = 0.00308 ft
Btu
°p,w = 0-122 T57oF
A = pubucn o = (515)(0.00308)(0.122) = 0.1935 Bt
wowCp,w 12 °F
dT,;
The slope =3 ves obtained for +t = 116 seconds, yielding
art,, . o
= = 4.93° F per sec for T, = 1,122° R
Thus
dT
_ w k
Z = pwbwcp,W i oeTy,

Z

1

1.530

Using T, = 1,568° R and 1 = 383" R and substituting the values of

z, A, T T and T_ along with the values of the probable error from

w? r2

the preceding table into equation (Al) results in

2
(%?) = 3.572 x 1O'LL + 11%.001 x 10‘J+ + 2.055 x 10'lL + 13.482 x lo'LL
-b - b
+ 42,799 x 1077 + 3.541 x 10
%? = #0.134% or #13.4 percent

Conduction Errors

A significant quantity, not included in the preceding error analysis, is
the effect of internal conduction. Because of its tendency to be in one
direction (to reduce the measured heat-transfer coefficient), this effect was
considered separately. Since the vertical fin of the X-15 includes various
spars and ribs, the effect of these structural elements as heat sinks was con-
sidered in a digital-computer program (thermal analyzer) that solves the
transient heat-conduction equation.

By assuming that the thermocouples were placed midway between the rib
centerlines, the internasl conduction losses were determined for the times at
which heat-transfer coefficients are shown in figure 9. The percentage
increase in heat-transfer coefficient shown in the following table is the
average value for the thermocouples between the indicated positions :
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Thermocouple

Average increase

Condition position, ft in h, percent
M=4.2

Blunt fin 1.29 to 1.71 h.b

Flight 2-29 2.14 to 7.78 75

t = 116 sec ) o .

Mg | nmegy | ud

= 80 en 2.576 to 8.212 27
M= 5.3

?i?gﬁtfg?ee a7 To L7l e

t = 90 sec 21k to 7.78 60

mig vn | 372 X

¢ 2087 e 2.576 to 8.212 5.9
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TABIE I

THERMOCOUPLE SKIN THICKNESS AND FLOW DISTANCE FOR

INSTRUMENTED CHORD OF UPPER VERTICAL FIN

Blunt leading edge Sharp leading edge
?W’ Chord = 8.57 ft Chord = 9.00 ft
1.
x, ft Percent chord x, ft Percent chord
0.037 1.286 15 1.719 19
.037 1,714 20 2.147 2h
.037 2.14%0 25 2.576 29
037 2.570 30 3.005 33
.030 3.643 Lo 4.076 45
.030 4.329 50 4,762 53
.030 4,993 58 5.426 60
.030 5.722 66.5 6.205 69
.030 6.408 4.5 6.841 76
.030 7.093 82.5 7.526 8L
.030 7.779 90.5 8.212 91
TABLE II

ADDITTIONAL, CHARACTERISTICS OF BLUNT-LEADING-EDGE

UPPER VERTICAL FIN

Airfoil section .

Total area, sq ft . . o e e
Span, ft . . . . e e e e
Mean aerodynamic chord ft

Root chord, ft . . . . .

Tip chord, ft .

Taper ratio .

Aspect ratio .

Sweep at leading edge deg .
Sweep at 25-percent-chord line, deg .

Speed brake total surface area, sq ft .

10° single wedge

: 23.41
. 11.18

.o3hh

4,58
8.95

. 10.21

7.56
CTH
51

30
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Figure 1l.— Three-view drawing of the X-15 research airplane.
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Figure 2.— Sketch of X-15 upper vertical fin showing instrumentation.

All

dimensions in inches unless noted.
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Shear-layer rake

(a) Sharp fin.

Shear-layer

(b) Blunt fin.

Figure 4.— Photos of shear-layer rake on sharp-

28
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and blunt-leading-edge fins.
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Figure 5.— Time history of typical heating flight (3-23).
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Shear -layer rake at 27-percent chord

} Measured data

Moeckel-Love
(refs. 11, 12)

ﬂﬁﬂiﬂﬁ!ﬂ!ﬁ
HA

i
L _uu'

S!!i

!'!iiEE‘??!IﬁiilﬁﬁiﬂiliiillﬁiﬂlMﬂ!ﬂ“!ﬁ"llﬂ!!
it e

IR
’i!'iiiillﬂﬂllll'i‘i!l!ﬁﬂl!ﬂll!llﬁlﬂlllll‘ﬁ

SRR EG
L
G R R
SR R

i e e
b R SRR it

il

R i
i !I!ﬂiﬁ:iﬁi"ﬁdllﬁﬂﬁ

i
il

B
81 R e e et B
BB BBillllﬂllllllﬂlﬂBiBI!EI!II!IIIIlIHiIlIIiE‘ﬂ!IH.HI’!IiEEi.Ilil:ll!i!llﬁmiﬂi‘!ﬂlﬂﬂlii!lﬁl
i B0 A R R R lﬂHH!IIIIIli[ﬂEE!Illllllllllllllll!llﬂllllllﬂii !i!l
A R R R A

BiliiiRR AR
Ill i

i i il
llll!lHlll""ﬂ!ﬁﬂlﬂlll!lllIﬁilllllIllllﬂmﬂiiIliiiﬁ.liiﬁiililhii||ﬂ:miﬁ"—"l!i.i§hsi.lI i
BEIIHI aa Iﬁ il

i mrﬁ;ifﬁ!adlﬁi%imﬁmﬂ l! !J&;ﬂ
e

K i i

!BiBililliiiﬂhﬁ%Eiilliiiﬁi'ldlﬂlllll i

B i AR ] mm!mmumn it
il ’i!

mmmumummmiumili i

i ,.HIII!IIIIIII.
TR AR T
A

l::ﬁﬁ
I
i

boundary-layer
edge (refs. I3, I4)

EZa|cuIaAted

£
=

I R R R R ) 0
!?;?"Eﬁuﬂﬂhllliﬂgglﬂﬂlﬂlﬂlﬂﬂlﬁlﬂlﬂ !lmlﬁ!i!‘l'!! ik

Calculated

=3
©
>
2
!
>
b
(=]
°
(=3
3
Q
o

Figure 7.— Measured and calculated shear-layer profiles for the sharp fin.
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Figure 8.— Comparison of measured and calculated local static pressure on the
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Figure 9.— Comparisons of measured and calculated turbulent heat-transfer
coefficients on the sharp and the blunt vertical fin.
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Figure 10.— Comparison of measured and calculated heat-transfer coefficients
from various X-15 surfaces.
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